Odd-even effects in charge transport across self-assembled monolayers.
نویسندگان
چکیده
This paper compares charge transport across self-assembled monolayers (SAMs) of n-alkanethiols containing odd and even numbers of methylenes. Ultraflat template-stripped silver (Ag(TS)) surfaces support the SAMs, while top electrodes of eutectic gallium-indium (EGaIn) contact the SAMs to form metal/SAM//oxide/EGaIn junctions. The EGaIn spontaneously reacts with ambient oxygen to form a thin (∼1 nm) oxide layer. This oxide layer enables EGaIn to maintain a stable, conical shape (convenient for forming microcontacts to SAMs) while retaining the ability to deform and flow upon contacting a hard surface. Conical electrodes of EGaIn conform (at least partially) to SAMs and generate high yields of working junctions. Ga(2)O(3)/EGaIn top electrodes enable the collection of statistically significant numbers of data in convenient periods of time. The observed difference in charge transport between n-alkanethiols with odd and even numbers of methylenes--the "odd-even effect"--is statistically discernible using these junctions and demonstrates that this technique is sensitive to small differences in the structure and properties of the SAM. Alkanethiols with an even number of methylenes exhibit the expected exponential decrease in current density, J, with increasing chain length, as do alkanethiols with an odd number of methylenes. This trend disappears, however, when the two data sets are analyzed together: alkanethiols with an even number of methylenes typically show higher J than homologous alkanethiols with an odd number of methylenes. The precision of the present measurements and the statistical power of the present analysis are only sufficient to identify, with statistical confidence, the difference between an odd and even number of methylenes with respect to J, but not with respect to the tunneling decay constant, β, or the pre-exponential factor, J(0). This paper includes a discussion of the possible origins of the odd-even effect but does not endorse a single explanation.
منابع مشابه
Odd-even effects in charge transport across n-alkanethiolate-based SAMs.
This paper compares rates of charge transport across self-assembled monolayers (SAMs) of n-alkanethiolates having odd and even numbers of carbon atoms (nodd and neven) using junctions with the structure M(TS)/SAM//Ga2O3/EGaIn (M = Au or Ag). Measurements of current density, J(V), across SAMs of n-alkanethiolates on Au(TS) and Ag(TS) demonstrated a statistically significant odd-even effect on Au...
متن کاملThe Porter-Whitesides Discrepancy: Revisiting Odd-Even Effects in Wetting Properties of n-Alkanethiolate SAMs
This review discusses the Porter-Whitesides discrepancy in wetting properties of n-alkanethiolate self-assembled monolayers (SAMs). About 25 years ago, Whitesides and coworker failed to observe any odd-even effect in wetting, however, Porter and his coworker did, albeit in select cases. Most previous studies agreed with Whitesides’ results, suggesting the absence of the odd-even effect in hydro...
متن کاملEffects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure.
Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-r...
متن کاملEffective anion sensing based on the ability of copper to affect electron transport across self-assembled monolayers.
The ability of copper ions to affect the charge-transfer resistance of self-assembled monolayers (SAMs) of a tris-(2-pyridylmethyl)amine-based ligand on to gold electrodes is used to create a novel, sensitive and selective electrochemical cyanide sensor.
متن کاملCharge Transport through Oligoarylene Self-assembled Monolayers: Interplay of Molecular Organization, Metal-Molecule Interactions, and Electronic Structure
Organic compounds–either as single molecules or organized in self-assembled monolayers (SAMs)–can act as wires, rectifiers, switches, or even transistors in the development of ultraminiaturized electronics. The prospect of such molecular electronics has led to a steadily growing interest in the characterization of both the electronic and structural features of relevant molecular species bound t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 9 شماره
صفحات -
تاریخ انتشار 2011